{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "47114285-22af-469e-81f3-560261036208", "metadata": {}, "outputs": [], "source": [ "from functools import cache\n", "import pandas as pd\n", "\n", "pd.set_option(\"display.max_columns\", None)" ] }, { "cell_type": "code", "execution_count": 3, "id": "73c5d186-84f4-4a8e-a572-566ab4936bd7", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/var/folders/05/y38rqjl55hjb_hbnypxzgrsw0000gn/T/ipykernel_93262/3018518299.py:3: DtypeWarning: Columns (20) have mixed types. Specify dtype option on import or set low_memory=False.\n", " pd.read_csv(\"2010-2016.csv\"),\n" ] } ], "source": [ "df = pd.concat(\n", " [\n", " pd.read_csv(\"2010-2016.csv\"),\n", " pd.read_csv(\"2017-2019.csv\"),\n", " ]\n", ")" ] }, { "cell_type": "code", "execution_count": 4, "id": "194a6cbd-0bd7-4c24-8eb4-f895457ecfed", "metadata": {}, "outputs": [], "source": [ "df.to_csv(\"2010-2019.csv\")" ] }, { "cell_type": "code", "execution_count": 5, "id": "3cfe3c4f-91ea-41e5-a0b9-557183080871", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Index: 20918084 entries, 0 to 5873376\n", "Data columns (total 32 columns):\n", " # Column Dtype \n", "--- ------ ----- \n", " 0 Unnamed: 0 int64 \n", " 1 edo_captura object\n", " 2 edo_nac_madre object\n", " 3 fecha_nac_madre object\n", " 4 edad_madre int64 \n", " 5 estado_conyugal object\n", " 6 entidad_residencia_madre object\n", " 7 numero_embarazos int64 \n", " 8 hijos_nacidos_muertos int64 \n", " 9 hijos_nacidos_vivos int64 \n", " 10 hijos_sobrevivientes int64 \n", " 11 el_hijo_anterior_nacio object\n", " 12 vive_aun_hijo_anterior object\n", " 13 orden_nacimiento int64 \n", " 14 recibio_atencion_prenatal object\n", " 15 trimestre_recibio_primera_consulta object\n", " 16 total_consultas_recibidas int64 \n", " 17 madre_sobrevivio_al_parto object\n", " 18 escolaridad_madre object\n", " 19 ocupacion_habitual_madre object\n", " 20 trabaja_actualmente object\n", " 21 fecha_nacimiento_nac_vivo object\n", " 22 hora_nacimiento_nac_vivo object\n", " 23 sexo_nac_vivo object\n", " 24 semanas_gestacion_nac_vivo int64 \n", " 25 talla_nac_vivo int64 \n", " 26 peso_nac_vivo int64 \n", " 27 valoracion_apgar_nac_vivo int64 \n", " 28 valoracion_silverman_nac_vivo int64 \n", " 29 producto_de_un_embarazo object\n", " 30 codigo_anomalia object\n", " 31 entidad_certifico object\n", "dtypes: int64(13), object(19)\n", "memory usage: 5.1+ GB\n" ] } ], "source": [ "df.info()" ] }, { "cell_type": "code", "execution_count": 6, "id": "f302574e-65d3-4b4e-9fad-c4a93b1ebba7", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "16777232 80891859 -rw-r--r-- 1 miguel.salgado staff 0 4854454496 \"Feb 25 01:57:13 2024\" \"Feb 25 01:59:10 2024\" \"Feb 25 01:59:10 2024\" \"Feb 25 01:57:10 2024\" 4096 9504688 0 2010-2019.csv\n" ] } ], "source": [ "! stat 2010-2019.csv" ] }, { "cell_type": "code", "execution_count": null, "id": "6f6673b8-7e8d-42fc-af10-4302cee2b37d", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.6" } }, "nbformat": 4, "nbformat_minor": 5 }